Tel: +86-731-83521833        Mobile: +86 13574841950         info@chenguangjd.cn

Chrome Plating Diamond Heat Sink Films High Thermal CVD Diamonds Surface Metallization 3*3 -20*20 Copper Plating Gold Plating Silver Plating
Home » Products » CVD Diamond » Chrome Plating Diamond Heat Sink Films High Thermal CVD Diamonds Surface Metallization 3*3 -20*20 Copper Plating Gold Plating Silver Plating

Product Category

Latest Products

" CVD / MCD technologies,  (111)-oriented diamond wire dies deliver unmatched precision for industrial wires, jewelry . And it have very long lifespan. "
0
0
Single Crystal HPHT Synthetic Diamond Plate for Cutting Tools
Size: 1-7mm
Thickness: 0.2-3mm
Shape: as you customize
0
0
Single crystal diamond CVD (chemical vapor deposition) refers to a type of diamond that is produced using the CVD process. In this process, a mixture of carbon-containing gases is decomposed under controlled conditions, resulting in the formation of a single crystal diamond layer on a substrate.

Single crystal diamond CVD is known for its exceptional hardness and thermal conductivity, which makes it useful for a range of industrial and scientific applications, such as cutting and grinding tools, heat spreaders, and optical components.

Compared to other forms of synthetic diamond, single crystal diamond CVD has a highly ordered crystal structure, which gives it improved physical and mechanical properties. This makes it a desirable material for a range of high-performance applications, where its hardness and thermal conductivity are important factors.

In summary, single crystal diamond CVD is a type of synthetic diamond that is produced using the CVD process and is characterized by its exceptional hardness and thermal conductivity. It has a wide range of applications in industries such as manufacturing, electronics, and optics.
 
 
0
0
Single crystal diamond CVD (chemical vapor deposition) refers to a type of diamond that is produced using the CVD process.

Single crystal diamond CVD is known for its exceptional hardness and thermal conductivity, which makes it useful for a range of industrial and scientific applications, such as cutting and grinding tools, heat spreaders, and optical components.

Compared to other forms of synthetic diamond, single crystal diamond CVD has a highly ordered crystal structure, which gives it improved physical and mechanical properties. This makes it a desirable material for a range of high-performance applications, where its hardness and thermal conductivity are important factors.
 
0
0
Diamond Semiconductor | Diamond Wafers | Diamond heat spreader
0
0
Synthetic diamond
The large size diamond crystal is an unprocessed diamond single crystal, which is made by high temperature and high pressure method. The size that our company can provide is generally 1mm -5mm large size single crystal with excellent performance, high hardness, good wear resistance, good corrosion resistance and high chemical stability, meeting various finishing tools (including single point, sheet, rotary and roller dresser, etc.), special cutting The application requirements of tools and indenters can also be used in the application of jewelry, crafts and other applications.
0
0

Chrome Plating Diamond Heat Sink Films High Thermal CVD Diamonds Surface Metallization 3*3 -20*20 Copper Plating Gold Plating Silver Plating

Single crystal diamond CVD (chemical vapor deposition) refers to a type of diamond that is produced using the CVD process. In this process, a mixture of carbon-containing gases is decomposed under controlled conditions, resulting in the formation of a single crystal diamond layer on a substrate.

By coating a metal film on the surface of diamond, diamond is endowed with conductivity, affinity for metals, and wettability, which can improve the physical and chemical properties of the material surface and enhance its compressive strength. We can produce Coated Diamond with coatings of gold, copper, nickel, and other materials.
 
Size:
Orientation:
Availability:
Quantity:
facebook sharing button
twitter sharing button
line sharing button
wechat sharing button
linkedin sharing button
pinterest sharing button
sharethis sharing button
  • JSD

  • INFI

 Purpose and Advantages of Metallization on Single-Crystal CVD Diamond Surfaces (e.g., Au, Ag, Cu, Cr)

Metallization is a critical process that transforms single-crystal CVD diamond from a "super-material" into a functional device component. Its core purpose is to create a robust, functional interface that enables electrical, thermal, and mechanical integration with external systems. It bridges the inherent properties of diamond and the practical requirements of device packaging and operation.


I. Primary Purposes of Metallization

1,Electrical Interfacing & Electrode Fabrication

Purpose: To form ohmic contacts, Schottky contacts, or patterned electrodes for electronic devices (e.g., FETs, diodes), radiation detectors, and electrochemical sensors.

How: Photolithography and metal deposition create precise conductive circuits and bonding pads on the diamond surface.

2,Thermal Integration (Heat Spreading/Dissipation)

Purpose: To enable the reliable, low-thermal-resistance attachment of a diamond heat spreader/sink to a heat-generating device (e.g., laser diode, power amplifier) or a cooling system via soldering or brazing.

How: A metallization stack acts as a solderable layer and diffusion barrier, creating a strong metallurgical bond between the diamond and an external metal mount (e.g., copper, copper-tungsten).

3,Optical Coating

Purpose: To deposit highly reflective metal films (e.g., Au, Ag) on the edges or specific areas of diamond optical windows, lenses, or laser crystals to serve as mirrors or protective coatings.

How: Gold's excellent infrared reflectivity is utilized to create high-performance reflective surfaces on diamond optics.

4,Surface Modification

Purpose: To alter surface properties—such as wear resistance for non-active areas, chemical affinity, or adhesion for subsequent layers—through coatings like chromium.


II. Advantages and Selection of Specific Metal Coatings

The choice of metal depends on the application requirements and the interfacial adhesion chemistry. Metallization is typically a multilayer stack consisting of an "adhesion layer" and a "functional layer."

Metal

Key Advantages

Typical Application & Rationale

Titanium / Chromium

The Ultimate Adhesion Layer. Ti or Cr reacts with surface carbon atoms to form strong, refractory carbides (TiC, Cr$_3$C$_2$), providing exceptional mechanical anchoring and chemical bonding. This is the essential foundation for most subsequent layers.

Mandatory First Layer: Used as the initial coating for any electrical or thermal connection requiring high adhesion. E.g., the first layer in Ti/Pt/Au or Cr/Pt/Au stacks.

Gold

The Premium Functional Top Layer. Extremely chemically inert (does not oxidize), offers excellent electrical and thermal conductivity, is highly solderable (e.g., Au-Sn eutectic), and is ideal for wire bonding.

Primary Top Layer: Used for high-frequency electrodes, high-reliability ohmic contacts, optical mirrors, and any application requiring oxidation resistance and easy packaging.

Silver

High-Performance Alternative. Possesses the highest electrical and thermal conductivity of all metals, with a lower cost than gold. The critical drawback is susceptibility to oxidation and sulfurization, degrading performance and solderability.

Niche Applications: Used for cost-sensitive internal conductive/thermal layers in sealed environments, or for devices requiring ultimate conductivity. Rarely used as an exposed top layer.

Copper

The Cost-Effective Thermal Champion. Exceptional thermal conductivity (second only to silver) at a much lower cost than Au or Ag. It is the ideal bulk thermal connection layer. Requires protection from oxidation.

Core of Heat Sink Applications: A Ti/Cu or Cr/Cu stack on diamond allows for brazing or sintering to copper substrates, creating a high-performance thermal pathway.

Platinum / Palladium

Noble Diffusion Barriers. Highly inert metals that effectively prevent interdiffusion between adjacent layers (e.g., Ti and Au) during high-temperature operation or processing, ensuring long-term interfacial stability.

Critical Intermediate Layer: A thin Pt or Pd layer inserted between Ti/Au or Cr/Au dramatically improves device reliability under thermal stress.




III. Summary of Core Advantages of Metallization

Enables Electrical "Dialogue": It allows the inherently insulating or semiconducting diamond to conduct electrical signals and current, integrating it into circuits.

Unlocks Ultimate Thermal Potential: It facilitates the efficient extraction of heat from the diamond's interior to an external system via low-thermal-resistance, robust bonds. This is the key to its application in 5G, laser, and aerospace thermal management.

Enhances Device Reliability & Lifespan: A robust metallization scheme withstands thermal cycling, mechanical stress, and environmental exposure, ensuring long-term operational stability.

Enables Standard Microfabrication: It allows diamond devices to be processed, packaged, and tested using mature semiconductor industry techniques, promoting scalability and commercialization.


Size Available:

Crystal growth process:
Mono crystal CVD diamond 
Color:
Normal grade - Near colorless, Mechanic grade - Brown
    
Advantage:
1) Regular shape, uniform size. The size can be strictly controlled according to customer needs.
2) High repurchase rate and high cost performance, well received by customers.
3) No visible growth lines,under 100x microscope, no black spots, no impurities, no crack.
4) The stress is good, the number of times of reuse is high, and it is not easy to crac
Size
7*7  8*8  9*9  10*10 11*11  12*12  13*13  14*14 -20*20
 Thickness: 0.05-3mm
Orientation:
4pt/100
Shape:
Square,Triangles, rectangles, swords
Lateral Dimensions Measured
to smaller side
Edges
Laser Cut
Laser Kerf
< 3°
Lateral Tolerance:
+0.1/-0 mm
Roughness, Ra
1. Two sides polished, Ra <10- 30 nm

2. One side polished, the other size is The other side is the cutting surface, or grow

3.Both sides are unpolished
Thermal Conductivity
≥600 W/mK
Thermal Expansion Coefficient
4.5-8 ppm/K(adjustable)
Density
5.6 g/cm3
Surface Modification
Chrome, Nickel
Transition Layer
Titanium, Platinum
Contact Layer
Gold, Copper
Crystallographic Orientation
100 110 111
Miscut for Main Face Orientation
±3°
Common Product Size
3mm×5mm×0.5mm
Transverse Tolerance
±0.05mm
Thickness Tolerance
±0.1mm
Edge Cutting
Laser Cutting

Picture details:

微信图片_20250225103436_1024_1024微信图片_20250225103448





Previous: 
Next: 
HAVE A QUESTION?
CONTACT US NOW
We are always happy to answer all your questions.

Social Links

Diamonds Category

About Us

Contact Us
Office Address: Yuhua District,
Changsha City, Hunan Province, China
Factory address: Yanling,
Zhuzhou City,Hunan Province, China
Tel: +86-731-83521833 / +86-731-83521533
Copyright © 2021 INFI ADVANCED MATERIALS CO.,LTD      Sitemap      Technology By Leadong